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Abstract
In this paper we present calculations of level populations and susceptibility for
an ensemble of five-level atoms doped in a photonic crystal, using the master
equation method. The atoms in the ensemble interact with the crystal which acts
as a reservoir and are coupled with two strong pump fields and a weak probe
field. It is found that, by manipulating the resonance energy associated with
one of the decay channels of the atom, the system can be switched between an
inverted and a non-inverted state. We have also observed the ac Stark effect in
these atoms and have shown that due to the role played by the band structure of
the photonic crystal, it is possible to switch between an absorption state and a
non-absorption state of the atomic system. This is a very important finding as
techniques of rendering material systems transparent to resonant laser radiation
are very desirable in the fabrication of novel optical and photonic devices.

1. Introduction

Recent efforts in the study of quantum coherence and interference in quantum optics and
semiconductor nanostructures have led to the discovery of many interesting phenomena [1–23].
These include lasing without inversion (LWI) [2], electromagnetically induced transparency
(EIT) [3], enhancement of nonlinear susceptibility [4], the ac Stark effect [5–16, 19–23], etc.
The aim of the present paper is to study the ac Stark effect in a photonic crystal doped with
an ensemble of five-level nanoparticles, which leads to several new phenomena with great
potential for applications. A comprehensive survey of the relevant literature suggests that this
effect is yet to be investigated in this novel class of materials.

The ac Stark effect—also known as Autler–Townes (A–T) splitting—occurs due to
nonlinear interactions between light and matter in the presence of one or more strong variable
radiation field(s) [5]. Irradiation by a strong field leads to dynamic splitting of the energy levels
of an atomic system [6]. The split states are said to be dressed by the strong radiation field.
The splitting phenomenon is particularly well resolved when the Rabi frequency of the strong
field is larger than the linewidths of the atomic energy levels [7].
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Over the past three decades, the ac Stark effect has been studied—theoretically and
experimentally—in many different types of systems, such as atomic gases [8, 9], laser-cooled
atoms [10], ions [11], gas-phase molecules [12] and solid state materials [13], under both
steady-state and transient [14] conditions. In particular, there has been considerable interest
in studying the effect in three-level atoms and nanoparticles [8, 15, 16], which are taken in
either of the �, V or � (cascade or ladder) configurations.

Recently, investigations of the ac Stark effect have been extended to semiconductor
nanostructures, such as quantum dots, wells, wires, etc. These nanostructures are essential
for the fabrication of devices for quantum computing. Quantum dots, in particular, have
been widely studied in this regard, when doped in semiconductors [17, 18]. Studies of the ac
Stark effect in these structures have addressed both theoretical and experimental aspects. For
example, a recent theoretical study has shown that the optical absorption spectra due to excitons
in a quantum dot superlattice embedded in a nanowire exhibit ac Stark splitting [19]. On the
experimental side, a similar splitting effect has been observed in the inter-subband transitions in
semiconductor quantum wells and it has been shown that the dephasing mechanisms associated
with these transitions have characteristics which make the wells behave as artificial atoms [20].

A type of system that has been found to be remarkably advantageous for the investigation
of the diverse features of the ac Stark effect consists of a four-level atom or quantum dot driven
by two pump fields and a weak probe field. At the core of this atomic configuration is a
�-type three-level subsystem. Wei et al [21] have carried out an extensive analysis of this
system and found that the resulting spectrum has up to three peaks (dynamic splitting), which
can be explained in terms of the dressed state formalism. Other types of four-level system
that have been used in ac Stark effect studies include doubly-driven Rb and Ba atoms. For
example, density matrix calculations of the fluorescence obtained from a four-level Rb atomic
system have shown A–T split states and transparency effects, which have been confirmed
experimentally [22]. Further empirical evidence of the effect has been found in the two-photon
resonant spectrum obtained in the presence of a strong coupling field from the non-degenerate
four-wave mixing in a four-level Ba system (dressed cascade configuration) [23].

The present paper, for the first time, considers the ac Stark effect in a three-dimensional
photonic crystal with isotropic geometry. The crystal structure consists of an isotropic
arrangement of dielectric spheres and it is doped with an ensemble of identical, non-interacting
five-level atoms or quantum dots. These doped atoms interact with the photonic crystal which
plays the role of a reservoir. Recently, experimental techniques have been developed for doping
impurity quantum dots in photonic crystals and their optical properties have been studied [24].
These have numerous applications in quantum computing and cryptography.

The structure of a photonic crystal is achieved by a periodic arrangement of dielectric
materials with differing dielectric constants [25–29]. This produces a periodicity in the
dielectric constant function of the crystal which leads to the formation of energy gaps in its
photon energy spectrum [25, 26], analogous to the energy gaps in the electronic band structures
of semiconductors. A current major area of study involving photonic crystals focuses on the
modification of radiative properties of doped atoms within the crystal reservoir [30–35].

In the calculations presented in this paper, we consider two distinct configurations of five-
level atoms, driven by two strong pump fields and a weak probe field (see figure 1). Due to the
interaction between the particles and the reservoir, the excited states decay spontaneously to
the lower states. Expressions for the susceptibility associated with the probed transitions have
been calculated using the master equation method.

Numerical simulations for the level populations and the imaginary part of the susceptibility
are performed for a photonic crystal with a gap to mid-gap ratio of around 20%. It is found
that by manipulating the decay rate with resonance tuning the atomic system can be switched
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Figure 1. Schematic diagrams for the five-level atom, driven by two pump laser fields with Rabi
frequencies �α and �β . The levels are denoted as |a〉, |b〉, |c〉, |d〉 and |e〉. The probe field with
Rabi frequency �p drives the (a) |c〉 → |e〉 or (b) |b〉 → |e〉 transition. The detunings of the two
pump fields and the probe field are denoted as �ab , �bc and (a) �ec or (b) �eb , respectively. The
dashed arrows represent the decay channels and �i denotes the decay rate of level |i〉.

between an inverted and a non-inverted state, with regards to the level population of the ground
state of the cascade. Furthermore, the band structure of the photonic crystal is found to have a
major influence on the ac Stark effect observed in the doped atoms. In particular, the probed
transition of the doped atom could be rendered transparent to any resonant radiation field,
i.e. the atom can be switched between an absorption and a non-absorption state, simply by
manipulating the location of the resonance energy.

2. Formulation of susceptibility

The photonic crystal is considered to be doped with an ensemble of identical, non-interacting
five-level impurity atoms. The crystal structure consists of a three-dimensional isotropic
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Figure 2. Plots of the dispersion relation (top panel) and the form factor Z(εk) (bottom panel) of
the photonic crystal with n = 1.4, a/L = 0.2 and L = 300 nm, where k denotes the wavevector.
The quantities εv and εc are the maximum energy of the valence band and the minimum energy of
the conduction band, respectively. The horizontal axis is the ratio of the energy εk to the maximum
valence band energy εv. The band gap of the crystal lies between εk/εv = 1 and εc/εv, shown by
the vertical dashed lines.

arrangement of dielectric spheres of radius a and refractive index n. The lattice constant of
the crystal is denoted by L. The band structure equation for this particular type of photonic
crystal has been calculated in [31] and can be written as:

εk = c�

4na
arccos

(
4n cos(kL) + (1 − n)2

(1 + n)2

)
(1)

where εk and k denote the energies and the wavevectors of the photons, respectively, and c is
the speed of light.

The energy dispersion relation given in equation (1) is plotted in figure 2 (top panel). For
the given crystal parameters, the gap energy corresponds to the near infrared and the optical
regions of the electromagnetic spectrum. Photonic crystals are commonly characterized by
their gap to mid-gap ratio, which is defined as 2(εc − εv)/(εc + εv). For this particular crystal,
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this ratio is around 20%. The parameters have been chosen to emulate the gap to mid-gap
ratio obtained in Yablonovite crystals [26]. It is important to emphasize that the findings in the
present paper are independent of the choice of photonic crystal.

The energy levels of an atom in the doped ensemble are denoted by |a〉, |b〉, |c〉, |d〉 and
|e〉. The quantities εab, εbc and εec (or εeb) are the transition energies corresponding to the
|b〉 → |a〉, |c〉 → |b〉 and |c〉 → |e〉 (or |b〉 → |e〉) transitions, respectively (see figure 1).
The energy difference between levels |a〉 and |d〉 is denoted as εad . For our calculations and
numerical simulations it is considered that the transition energies εab, εbc and εec (or εeb) lie in
a region away from the band gap of the photonic crystal, where its density of states (DOS) is
constant and does not affect the coupling of the laser fields with the doped atoms.

We consider that the atoms in the ensemble interact with the photonic crystal reservoir. Due
to this interaction, level |a〉 decays to level |d〉 and levels |b〉 and |d〉 decay to level |c〉. Level
|e〉 decays to level |c〉 or level |b〉 in figures 1(a) and (b), respectively. It is important to note
that the atomic arrangement described above is similar to the experimental double resonance
scheme used in [36], with the exception that the present configuration has an extra level |e〉
which is used to study the absorption spectrum.

The pair of excited levels |a〉 and |b〉 and the ground level |c〉 are taken in � configuration,
as shown in figure 1. The transition |b〉 → |a〉 is driven by a strong pump laser field of energy
εα and Rabi frequency �α. Similarly, the transition |c〉 → |b〉 is driven by a second strong
pump laser field of energy εβ and Rabi frequency �β . A weak tunable probe field of energy εp

and electric field amplitude Ep is applied between the ground level |c〉 (or the middle level |b〉)
and another excited level |e〉, as seen in figure 1(a) (or 1(b)). This weak field facilitates the study
of the absorption spectrum of the atom. Other transitions are dipole forbidden. It is important
to note that this type of atomic configuration has been previously used in [21]. A significant
difference is that our model has a fifth level |d〉 which acts as the base level in the decay channel
originating from the excited level |a〉. The addition of this extra level produces very interesting
results which are used to propose new switching techniques. These are discussed in the next
section.

The Hamiltonian of the system, for the configuration in figure 1(a), is written in energy
space as

H = HA + VA−F + HR + VA−R (2)

where

HA = εaσaa + εbσbb + εcσcc + εdσdd + εeσee (3a)

VA−F = −(h̄/2)(�ασ+
abe−i(εα−εab)t/� + �βσ+

bce−i(εβ−εbc)t/� + �pσ
+
ece−i(εp−εec)t/�) + h.c. (3b)

HR =
∫

C

dεk

2π
εk p+(εk)p(εk) (3c)

VA−R = −
∫

C

dεk

2π

√
γ0 Z(εk)p(εk)σ

+
ade−i(εk −εad )t/�

−
∑

i=b,d

∫
C

dεk′

2π

√
γ0 Z(εk′)p(εk′)σ+

ic e−i(εk′ −εic )t/�

−
∫

C

dεk′′

2π

√
γ0 Z(εk′′)p(εk′′)σ+

ece−i(εk′′ −εec)t/� + h.c. (3d)

In the above, εi denotes the energy of level |i〉 and εi j = εi −ε j . The operators σii = |i〉〈i |
and σ+

i j = |i〉〈 j |, where |i〉 and | j〉 denote levels |a〉, |b〉, |c〉, |d〉 and |e〉. In equation (2), HA,
VA−F, HR and VA−R are the Hamiltonians of the five-level atom, the atom–field interactions, the
crystal reservoir and the atom–reservoir interaction, respectively. The interaction Hamiltonians
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VA−F and VA−R given in equations (3b) and (3d) are obtained under the electric dipole and
rotating wave approximations [31]. The p(εk) and p†(εk) operators denote the annihilation
and creation of photons, respectively, where εk is the band structure energy defined in equation
(1). The integration contour C consists of two intervals: −∞ < εk � εv and εc � εk < ∞.
The quantity γ0 is the vacuum decay rate, as defined in [33]. All frequencies discussed in this
paper are measured with respect to γ0. Note that the Hamiltonian for the atom in figure 1(b)
can be written as in equation (2) with σ+

ec , εec and εic in equations (3b) and (3d) replaced by
σ+

eb, εeb and εib, respectively.
Z(εk) is the form factor which is derived from equation (1) and is written as [32]:

Z(εk) =
[
4n(a/L)(1 + n)2 sin(4naεk/c�)

]1/2

[
16n2 − [

(1 + n)2 cos(4naεk/c�) − (1 − n)2
]2

]1/4 . (4)

Note that the form factor, plotted in the bottom panel of figure 2, depends on the refractive
index n and the ratio a/L. Also of note is the fact that it has a constant value of almost unity
when εk is away from the band gap and a very large value when εk lies near either of the band
edges.

It is important to emphasize that, in the present paper, we have considered an isotropic
photonic crystal. The difference between an isotropic and an anisotropic crystal is that the
former has a band gap which is identical in all directions whereas the latter’s band gap is
direction-dependent. The band structure of an anisotropic photonic crystal as seen from the
point of view of a doped particle varies with its location. The form factor given in equation
(4) depends on the DOS which is determined by the energy gap of the crystal. As a result, the
form factor for an anisotropic crystal has anisotropic values in different crystal directions. The
predictions made in the present paper using the band structure of an isotropic crystal are valid
for all types of photonic crystals which have energy gaps in their dispersion relations.

The aim of this section is to obtain an expression for the susceptibility due to the weak
probe field. For the case of the atom in figure 1(a), the susceptibility can be written as [37]:

χ1 = 2μecρec

ε0 Ep
(5)

where ρi j and μi j denote the elements of the density matrix and the dipole operator associated
with the transition | j〉 → |i〉, respectively, and ε0 is the dielectric constant of the medium. The
density matrix elements can be calculated using the master equation method.

The system is prepared in such a way that initially the atoms are in ground state |c〉. As
the pump fields are switched on, the excited levels become populated. Using equations (2) and
(3) and following the method used in [21, 34, 35, 37], the equations of motion of the density
matrix elements can be written as follows:

ρ̇aa = −�aρaa − i�α(ρab − ρba)/2 (6a)

ρ̇bb = −�bρbb + i[�α(ρab − ρba) − �β(ρbc − ρcb)]/2 (6b)

ρ̇cc = �bρbb + �dρdd + �eρee + i[�β(ρbc − ρcb) + �p(ρec − ρce)]/2 (6c)

ρ̇dd = �aρaa − �dρdd (6d)

ρ̇ee = −�eρee − i�p(ρec − ρce)/2 (6e)

ρ̇ab = [i�ab − �ab]ρab − i[�α(ρaa − ρbb) + �βρac]/2 (6 f )

ρ̇ac = [i(�ab + �bc) − �a/2]ρac + i[�αρbc − �βρab − �pρae]/2 (6g)

ρ̇ad = [i(�ab + �bc) − �ad ]ρad + i�αρbd/2 (6h)

ρ̇bc = [i�bc − �b/2]ρbc + i[�αρac − �β(ρbb − ρcc) − �pρbe]/2 (6i )
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ρ̇bd = [i�bc − �bd ]ρbd + i[�αρad + �βρcd ]/2 (6 j )

ρ̇dc = −�dρdc/2 − i[�βρdb + �pρde]/2 (6k)

ρ̇ea = [i(�ec − �ab − �bc) − �ae]ρea − i[�αρeb − �pρca]/2 (6l)

ρ̇eb = [i(�ec − �bc) − �be]ρeb − i[�αρea + �βρec − �pρcb]/2 (6m)

ρ̇ec = [i�ec − �e/2]ρec − i[�βρeb − �p(ρcc − ρee)]/2 (6n)

ρ̇ed = [i�ec − �de]ρed + i�pρcd/2 (6o)

where �i j = (�i + � j )/2 and the Rabi frequency �p = μec Ep/2�. The real detuning terms
appearing in the differential equations in equation (6) are given by �ab = (εα − εab)/�,
�bc = (εβ − εbc)/� and �ec = (εp − εec)/�.

The �i terms in the density matrix equations are the reservoir-mediated decay rates.
These are obtained, assuming that the resonance energies lie within the bands of the photonic
crystal [33], from:

�a = γ0 Z(εad)
2, �b = γ0 Z(εbc)

2 (7a)

�d = γ0 Z(εdc)
2, �e = γ0 Z(εec)

2. (7b)

It has been shown that when the resonance energy lies within the band gap, �i = 0 [33].
The density matrix element ρec has been calculated, under the steady-state approximation

in the first order of the Rabi frequency �p, using the method in [21]. The calculation includes
all orders of the pump field Rabi frequencies �α and �β . The susceptibility, which is a complex
quantity, is written as χ1 = χ ′

1 + iχ ′′
1 with χ ′

1 and χ ′′
1 denoting the real and imaginary parts,

respectively. Using the definition in equation (5), χ ′
1 and χ ′′

1 can be expressed as follow:

χ ′
1 = χ0(G ′

1 H ′
1 + G ′′

1 H ′′
1 )

(H ′
1)

2 + (H ′′
1 )2

(8a)

χ ′′
1 = χ0(G ′′

1 H ′
1 − G ′

1 H ′′
1 )

(H ′
1)

2 + (H ′′
1 )2

(8b)

where χ0 = μ2
ec/(ε0�γ0).

The terms G ′
1, G ′′

1 , H ′
1, and H ′′

1 appearing in equation (8) are real-valued and are given by

G ′
1 = −�β(�ea P ′

cb + �ae P ′′
cb + �α P ′′

ca/2)/2 − ρ(0)
cc (�be�ea + �ae�eb) (9a)

G ′′
1 = �β(�ea P ′′

cb − �ae P ′
cb + �α P ′

ca/2)/2 − ρ(0)
cc (�ae�be + �2

α/4 − �ea�eb) (9b)

H ′
1 = �ec(�be�ea + �ae�eb) − �e(�ae�be − �ea�eb)/2 − (�ae�

2
β/4 + �e�

2
α/2) (9c)

H ′′
1 = �ec(�ae�be − �ea�eb) + �e(�be�ea + �ae�eb)/2 + (�ea�

2
β/4 + �e�

2
α/2) (9d)

where the detuning terms are defined as �ea = �ec − �ab − �bc and �eb = �ec − �bc.
The P ′

cb, P ′′
cb, P ′

ca and P ′′
ca terms in equations (9a) and (9b) have been derived as follows:

P ′
cb = X ′

cbρ
(0)

bb + Y ′
cbρ

(0)
aa + S′

cbρ
(0)

dd + Z ′
cb,

P ′′
cb = X ′′

cbρ
(0)
bb + Y ′′

cbρ
(0)
aa + S′′

cbρ
(0)
dd + Z ′′

cb

(10a)

P ′
ca = X ′

caρ
(0)
bb + Y ′

caρ
(0)
aa + S′

caρ
(0)
dd + Z ′

ca,

P ′′
ca = X ′′

caρ
(0)
bb + Y ′′

caρ
(0)
aa + S′′

caρ
(0)
dd + Z ′′

ca

(10b)

7
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where the zeroth-order density matrix elements ρ(0)
aa , ρ

(0)

bb and ρ
(0)

dd appearing in equations (9)
and (10) are written as:

ρ(0)
aa = �2

α(Xaaρ
(0)
bb + Zaa)/2

ρ
(0)

dd = [�a�
2
α(Xaaρ

(0)

bb + Zaa)]/2�d

ρ
(0)
bb = �2

α Zaa[�2
β(�d Re(Ybc) + �a Re(Sbc))/2 − �a]/2 + �2

β�d Re(Zbc)/2

�d [�b − �2
β Re(Xbc)/2] − �2

α Xaa[�2
β(�d Re(Ybc) + �a Re(Sbc))/2 − �a]/2

(11)

with

Xaa = �d X ′
ab

�d�a − �2
α

[
�d Y ′

ab + �a S′
ab

]
/2

, Zaa = �d Z ′
ab

�d�a − �2
α

[
�d Y ′

ab + �a S′
ab

]
/2

. (12)

The density matrix element ρ(0)
cc is obtained from ρ(0)

cc = 1 − ρ(0)
aa − ρ

(0)
bb − ρ

(0)
dd .

The complex-valued terms Xi j = X ′
i j + iX ′′

i j , Yi j = Y ′
i j + iY ′′

i j , Zi j = Z ′
i j + iZ ′′

i j and
Si j = S′

i j + iS′′
i j appearing in equations (10)–(12) are derived as:

Xab = −dbcdac + �2
β/2 − �2

α/4

D
, Xca = 2dba + dcb

D
,

Xcb = 2dcadba + �2
β/2 − �2

α/4

D

Yab = dbcdac + �2
α/4 + �2

β/4

D
, Yca = dba − dcb

D
,

Ycb = dcadba + �2
α/4 + �2

β/4

D

Zab = −�2
β

4D
= −Sab, Zca = −dba

D
= −Sca,

Zcb = −dcadba + �2
β/4

D
= −Scb

(13)

with

D = dcbdbadca + dba�
2
α/4 + dcb�

2
β/4 (14)

where di j = i�i j − �i j , which denotes the complex detuning of the laser field coupled to the
transition |i〉 → | j〉.

Similar calculations have also been performed for the atom in figure 1(b), where the weak
field probes the |b〉 → |e〉 transition. The corresponding equations of motion of the density
matrix elements are written as:

ρ̇aa = −�aρaa − i�α(ρab − ρba)/2 (15a)

ρ̇bb = −�bρbb + �eρee + i[�α(ρab − ρba) − �β(ρbc − ρcb) + �p(ρeb − ρbe)]/2 (15b)

ρ̇cc = �bρbb + �dρdd + i�β(ρbc − ρcb)/2 (15c)

ρ̇dd = �aρaa − �dρdd (15d)

ρ̇ee = −�eρee − i�p(ρeb − ρbe)/2 (15e)

ρ̇ab = [i�ab − �ab]ρab − i[�α(ρaa − ρbb) + �βρac + �pρae]/2 (15 f )

ρ̇ac = [i(�ab + �bc) − �a/2]ρac + i[�αρbc − �βρab]/2 (15g)

ρ̇ad = [i(�ab + �bc) − �ad ]ρad + i�αρbd/2 (15h)

ρ̇bc = [i�bc − �b/2]ρbc + i[�αρac − �β(ρbb − ρcc) + �pρec]/2 (15i )

ρ̇bd = [i�bc − �bd ]ρbd + i[�αρad + �βρcd + �pρed ]/2 (15 j )

8
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ρ̇dc = −�dρdc/2 − i�βρdb/2 (15k)

ρ̇ea = [i(�eb − �ab) − �ae]ρea − i[�αρeb − �pρba]/2 (15l)

ρ̇eb = [i�eb − �be]ρeb − i[�αρea + �βρec + �p(ρee − ρbb)]/2 (15m)

ρ̇ec = [i(�eb + �bc) − �e/2]ρec − i[�βρeb − �pρbc]/2 (15n)

ρ̇ed = [i(�eb + �bc) − �de]ρed + i�pρbd/2 (15o)

where the decay rate �e = γ0 Z(εeb)
2, the modified probe field detuning �eb = (εp − εeb)/�

and the Rabi frequency �p = μeb Ep/2�. Apart from these exceptions, all other quantities
are defined as for the previous atomic configuration. In this case, we can write the real and
imaginary parts of the susceptibility as:

χ ′
2 = χ0(G ′

2 H ′
1 + G ′′

2 H ′′
1 )

(H ′
1)

2 + (H ′′
1 )2

(16a)

χ ′′
2 = χ0(G ′′

2 H ′
1 − G ′

2 H ′′
1 )

(H ′
1)

2 + (H ′′
1 )2

(16b)

where it has been assumed that μeb = μec.
The real-valued terms G ′

2 and G ′′
2 appearing in equation (16) are given by

G ′
2 = �β(�ea P ′′

cb − �ae P ′
cb)/2 − �α(�e P ′

ab/2 + �ec P ′′
ab)/2 − ρ(0)

cc (�e�ea/2 + �ae�ec)

(17a)

G ′′
2 = �β(�ea P ′

cb + �ae P ′′
cb)/2 + �α(�e P ′′

ab/2 + �ec P ′
ab)/2 − ρ(0)

cc (�e�ae/2 − �ea�ec)

(17b)

where

P ′
ab = X ′

abρ
(0)
bb + Y ′

abρ
(0)
aa + S′

abρ
(0)
dd + Z ′

ab,

P ′′
ab = X ′′

abρ
(0)
bb + Y ′′

abρ
(0)
aa + S′′

abρ
(0)
dd + Z ′′

ab

(18)

The detuning terms in this case are given by �ec = �eb +�bc and �ea = �eb −�ab. The
complex-valued terms Xab, Yab, Zab and Sab are identical to those in the case of the first atom.
The density matrix elements ρ(0)

aa , ρ
(0)
bb , ρ(0)

cc and ρ
(0)
dd appearing in equations (17) and (18) are

also as defined before.

3. Results and discussions

In this section we present numerical simulations of the density matrix elements and the
imaginary part of the susceptibility for the isotropic photonic crystal discussed in the previous
section.

First we calculate the time evolution of the level populations of the doped atoms. Our
primary aim is to study the effect of the band structure of the crystal reservoir on the population
densities of the atomic energy levels. The differential equations for the density matrix elements
given in (6) are solved numerically, using a Fehlberg fourth–fifth-order Runge–Kutta method
in the Maple scientific computing environment. As an initial condition, it is assumed that
ρcc(0) = 1 and all other levels are unpopulated.

The numerical solutions are obtained for the atomic scheme in figure 1(a) and are shown in
figure 3. The two pump laser fields are considered to be resonant, i.e. �ab/γ0 = �bc/γ0 = 0,
and the detuning of the probe field �ec/γ0 = 10. The Rabi frequencies of the pump and probe
fields are taken as �α/γ0 = �β/γ0 = 2 and �p/γ0 = 0.2. Note that similar parameters have
been used in [21]. The plots in figures 3(a)–(c) and (d) show the population densities ρaa , ρdd ,
ρbb and ρcc, respectively. The solid and dotted curves in these figures represent the cases where
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Figure 3. Numerical plots of the time evolution of the population densities (a) ρaa , (b) ρdd , (c) ρbb

and (d) ρcc of the atom in figure 1(a). The horizontal axes show dimensionless time γ0t . The solid
curves are drawn for the case where εad/εv = 80.00%. The dotted curves represent the case where
εad/εv = 99.99%. All other resonance energies are kept far from either of the band edges.

the resonance energy εad is away from (εad/εv = 80.00%) and close to (εad/εv = 99.99%) the
lower edge of the band gap of the photonic crystal, respectively.

After the laser fields are turned on, the population densities of the atomic levels exhibit
Rabi oscillations. Eventually, the oscillations are observed to stabilize and the level populations
reach a steady state.

It can be seen from the transient plots in figures 3(a) and (b) that the steady-state population
densities ρaa and ρdd decrease as the resonance energy εad approaches the lower band edge.
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Figure 4. Numerical plots of the time evolution of χ ′′
1 /χ0 for εad/εv = 80.00% (solid curve)

and εad/εv = 99.99% (dotted curve), using the atomic scheme in figure 1(a). All other resonance
energies are kept away from either of the band edges at all times. The horizontal axis shows scaled
time γ0t .

On the other hand, as seen in the plots in figures 3(c) and (d), the population densities ρbb

and ρcc have higher steady-state values under the same scenario. This is a very interesting
behaviour which has not been studied previously in this system. The explanations behind these
observations are given below.

With increasing proximity of the resonance energy εad to the lower band edge, the decay
rate �a given in equation (7a) becomes larger due to the growing value of the form factor (see
figure 2). A larger value of �a has the effect of depopulating level |a〉 with increasing rapidity,
as seen from equation (6a). This, in turn, leads to a substantial decline in the steady-state level
population ρaa.

Using equation (6d) and assuming steady-state conditions, the population density ρdd can
be written as ρdd = (�aρaa)/�d . This indicates that ρdd is directly proportional to both �a and
ρaa . Although the decay rate �a increases as the resonance energy εad approaches the lower
band edge, the range of its values remain within the same order of magnitude. In contrast, for
the same change in the resonance energy, the decrease in ρaa is over several orders of magnitude
as it is proportional to an exponentially decaying function of �a . Consequently, ρdd is observed
to decrease.

The reason behind the increase in the steady-state population density ρcc is its dependence
on ρdd , as seen from equation (6c). Since level |d〉 decays to level |c〉, a decrease in ρdd implies
an increase in ρcc. Similarly, the steady-state population density ρbb is observed to increase as
εad approaches the band edge. This is due to the fact that an increase in the population in
level |c〉 means that more particles are pumped up to level |b〉, as seen from the last term on
equation (6b). It is worthwhile noting that this effect is also expected in the case of level |e〉,
although to a much smaller degree (not plotted).

The most important result concerning the steady-state level populations is obtained from
figure 3(d). It can be seen that, as εad approaches the band edge, an inversion occurs in the
population density of the ground level |c〉. Therefore, it is possible to switch the system from
an inverted state to a non-inverted state (and vice versa), with respect to level populations, by
manipulating the resonance energy between levels |a〉 and |d〉. This is a very significant new
finding of our theory, which can be used to make new types of photonic switches.

Figure 4 shows the time evolution of χ ′′
1 /χ0 for the atom in figure 1(a), at resonance

energies away (solid curve) and close (dotted curve) to the band edge. The curves are drawn
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using the same detuning parameters and probe field strength as in figure 3. The Rabi frequencies
of the pump fields in this case are �α/γ0 = �β/γ0 = 15. Due to the relatively large values of
these frequencies, one can now see a greater number of oscillations. A similar set of values for
these Rabi frequencies will be used later in our analyses of the system in the steady state.

In figure 4, it is interesting to note that, as εad approaches the band edge and the decay
rate �a increases, χ ′′

1 /χ0 reaches its steady-state value comparatively earlier and with fewer
oscillations (see dotted curve). This can be understood by considering the fact that χ ′′

1 /χ0

depends on the level population ρcc, which attains steady state earlier for large values of �a

(see equation (6n) and figure 3(d)).
Finally, with regards to the transient calculations presented above, it must be noted that

similar results can also be obtained for the second atomic scheme given in figure 1(b).
Next, we present an analysis of the ac Stark effect in the doped atoms and study how

it is affected by the band structure of the photonic crystal. The absorption profiles of the
probe beams for the two atomic configurations in figure 1 have been calculated in figures 5
and 6, using equations (8b) and (16b), respectively. The Rabi frequencies in this case are:
�α/γ0 = �β/γ0 = 10 and �p/γ0 = 0.2. The larger Rabi frequencies for the pump fields
have been chosen to make the splitting effect more pronounced. For figures 5(a) and 6(a), the
pump fields are considered to be resonant, i.e. �ab/γ0 = �bc/γ0 = 0, whereas in figures 5(b)
and 6(b), �ab/γ0 = 2 and �bc/γ0 = 0. These parameters are similar to those used in [21].
As before, the solid and dash–dotted curves in figures 5 and 6 correspond to the cases when
εad/εv = 80.00% and εad/εv = 99.99%, respectively.

In figure 5, one can see that the absorption profiles represented by the two solid curves are
each characterized by three peaks. This is an evidence of ac Stark splitting (dynamic) in this
system. The mechanism that gives rise to this effect is briefly explained below.

When εad lies away from the band edge of the crystal, we have the condition where the
linewidth �a is small compared to the Rabi frequencies �α and �β . In this situation, we get
strong atom–field coupling and the dressed state of the system, which is a linear combination
of the states |a〉, |b〉 and |c〉, splits into three states. As a result, one can now observe three
transitions from the ground level |c〉 to the excited level |e〉 (see solid curves in figure 5). This
splitting of energy levels has also been clearly explained using the idea of dressed states in [21],
where similar results were obtained in atomic gases.

In both figures 5(a) and (b), as εad approaches the band edge, the central peak disappears
and the heights of the two side peaks increase (dash–dotted curves). In addition, one can
observe shifts in the locations of the side peaks. These are very interesting observations which
have not been made previously in this system.

The disappearance of the central peak can be explained as follows. In the presence
of strong pump field Rabi frequencies �α and �β , the system has three dressed states,
as mentioned before. Note that the three peaks in figure 5(a) are located at �ec/γ0 =
− 1

2γ0

√
�2

α + �2
β ≈ −7.07, �ec/γ0 = 0 and �ec/γ0 = 1

2γ0

√
�2

α + �2
β ≈ 7.07 (solid curve

in figure 5(a)).
When the resonance energy lies near the band edge, �a � �α and the effect of �α

disappears. In other words, the effect of the pump field with Rabi frequency �α is inhibited
by the band structure of the photonic crystal. Now the system has two dressed states which
are a linear combination of states |b〉 and |c〉. As a result, we get two transitions located at
�ec/γ0 = −�β/(2γ0) = −5 and �ec/γ0 = �β/(2γ0) = 5.

Similar explanations are applicable to the dash–dotted curve in figure 5(b), except the
locations and the relative heights of the peaks will be different owing to the non-zero detuning
parameter �ab/γ0.
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Figure 5. Plots of χ ′′
1 /χ0 against probe field detuning �ec/γ0 for the atom in figure 1(a), in steady

state. In (a) �ab/γ0 = �bc/γ0 = 0 and in (b) �ab/γ0 = 2 and �bc/γ0 = 0. The Rabi frequencies
of the laser fields are taken as �α/γ0 = �β/γ0 = 10 and �p/γ0 = 0.2. The solid curves
are drawn for the case where all resonance energies are away from either of the band edges and
εad/εv = 80.00%. The dash–dotted curves represent the case where εad/εv = 99.99% while all
other energies remain far from the band edges.

In figure 6, we have plotted the imaginary part of the susceptibility for the atomic
configuration in figure 1(b), where the probe field sweeps the |b〉 → |e〉 transition. For
figure 6(a), both the pump fields are considered to be resonant, whereas for figure 6(b) the
pump field with Rabi frequency �α has non-zero detuning. When εad lies away from the band
edge, one can see that the absorption profile seen in the solid curve in figure 6(a) is characterized
by two strong peaks. In contrast, in figure 6(b), the solid curve has three peaks. However, as
the resonance energy approaches the band edge of the crystal, we observe two peaks for each
of the plots in figure 6 (dash–dotted curves) and the locations of the peaks shift towards the
zero detuning mark.

In order to understand the effect in figure 6(a), we recall that the system can have three
dressed states due to the strong coupling of the pump fields. If both pump fields are resonant,
the transition from the middle dressed state is forbidden. In this case, the location of the peaks
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Figure 6. Plots of χ ′′
2 /χ0 against probe field detuning �eb/γ0 for the atom in figure 1(b), in steady

state. In (a) �ab/γ0 = �bc/γ0 = 0 and in (b) �ab/γ0 = 2 and �bc/γ0 = 0. The Rabi frequencies
of the laser fields are taken as �α/γ0 = �β/γ0 = 10 and �p/γ0 = 0.2. The solid curves
are drawn for the case where all resonance energies are away from either of the band edges and
εad/εv = 80.00%. The dash–dotted curves represent the case where εad/εv = 99.99% while all
other energies remain far from the band edges.

are �eb/γ0 = − 1
2γ0

√
�2

α + �2
β ≈ −7.07 and �eb/γ0 = 1

2γ0

√
�2

α + �2
β ≈ 7.07. When the

resonance energy lies near the band edge and the decay rate �a is large compared to �α we get
two transitions located at �eb/γ0 = −�β/2 = −5 and �eb/γ0 = �β/2 = 5.

Figure 6(b) can be explained in a similar way to figure 5(b). It can also be seen from this
figure that the central peak is significantly weaker than the side peaks. This can be explained
by the fact that, at zero detuning, the transition from the middle state of the three dressed states
of the system is forbidden (see discussion above). As the detuning is increased, the transition
from the middle state becomes allowed. The dash–dotted curve in figure 6(b) can be explained
in the same manner as that in figure 6(a), except the location of the peaks will be different due
to the non-zero �ab/γ0 parameter.
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In figures 5 and 6 we have shown that due to the role played by the band structure of
the photonic crystal, the doped atom effectively becomes transparent to any radiation field
tuned to the resonance energy of the probed transition. In fact, we have demonstrated that it
is possible to switch from an absorption state to a non-absorption state (and vice versa) for
the atomic system, by controlling the resonance energy. More precisely, the transparency is
seen to be directly dependent on the location of the resonance energy with respect to the band
gap of the crystal. This is a very important new finding as techniques of rendering material
systems transparent to resonant laser radiation are very desirable for applications in quantum
optics and radiation physics. For example, the transparency effect can be used to enhance the
properties and efficiency of physical processes such as nonlinear frequency conversion, optical
phase conjugation, squeezed-light generation, low-light-level photonic switching, etc [38].

A survey of relevant studies reveals that the most common techniques employed in
producing the transparency effect include the manipulation of atomic response through
adjustment of the intensity-ratio of pump fields [15, 22, 23], changing the amplitude and phase
of the driving field(s) [16], tuning the pump field [39], etc. In the calculations presented in this
work, a new technique for obtaining transparency has been shown, making use of the unique
properties of the band structure of photonic crystals. This has great potential for applications
in creating new photonic devices for quantum computing.

In the present paper we have studied the ac Stark effect caused by two external strong pump
fields in a photonic crystal doped with five-level nanoparticles. The transparency obtained in
our theory is an effect of the two pump fields and the decay rate due to the coupling between
the atoms and the photonic crystal. There have been many other studies of transparency and
splitting of energy levels in doped photonic crystals using systems and methods which are
different from those considered in our paper. For example, Petrosyan and Kurizki [40] have
studied four-level atoms where they have applied a probe and a pump field. They observed EIT
and the splitting effect due to the coupling of the atom to the localized DOS and the DOS at the
band edge of the crystal. Similar studies have also been performed by other researchers [41].
In contrast to these works, we do not consider the A–T splitting of the resonance energy due to
the coupling of the transition to the DOS. Instead, the splitting effect demonstrated in our paper
occurs due to the external laser fields. This is a very important distinction.

EIT has also been achieved by Singh in four-level atoms doped in a photonic crystal with
the application of only one laser field [35]. It is found that the medium can be transformed
from a transparent to a non-transparent state just by changing the location of the resonance
energy. More recently, induced transparencies in photonic crystals have been studied using
cross-phase modulation [42]. The EIT effect in spontaneous emission has also been investigated
in a double-band photonic crystal doped with both V-type three-level and double V-type four-
level atoms [43].

The isotropic model of the photonic crystal leads to a divergent DOS at the band
edge [27, 28, 30, 44]. It is important to specify how far from the divergent band edge the
resonance energy needs to be in order to facilitate the Markovian approximation. Analyses of
the decay of an atom with the resonance energy close to the band edge energy have shown that
the band edge modes behave like a cavity and the atom–band edge modes interaction splits the
atomic resonance into a doublet [31]. One component of the doublet falls in the continuum
of states and decays. The other component falls inside the band gap giving rise to a photon–
atom bound state. The magnitude of the splitting is a function of atom–band edge detuning.
For some values of this detuning, the splitting disappears or its influence on the atom becomes
negligible.

If the atomic frequency is inside the band gap, the isotropic model guarantees the existence
of an atom–photon bound state. This becomes evident through oscillations in the atomic
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inversion. However, in the present paper, we have not considered the case where the resonance
energy lies in the band gap. Instead, we have taken the resonance energy to be within the band
but not at the band edge. It is important to note that for large detunings from the band edge, the
magnitude of the oscillations in the atomic inversion becomes negligibly small [27].

It is known that the typical signature of non-Markovian effects [27, 28, 30, 44] is a
non-exponential decay [27, 45]. It can be deduced from [27, 45] that, in the isotropic
photonic crystal considered in our paper, the Markovian approximation is valid if the detuning
�ε ≡ εv − εad approximately satisfies the following condition:

|�ε|
εv

� 50βI

εv
(19)

where βI is defined as the characteristic energy of the atom–photon interaction [27]. In other
words, the Markovian approximation is valid when the DOS can be considered smooth on the
scale determined by this characteristic energy. βI can be approximated as [27, 45]:

βI =
[√

π/AI(εadμad)
2

12
√

�ε0εvL2

]2/3

(20)

with the constant AI obtained using the energy dispersion relation given in equation (1)
as [31]:

AI =
[
− cL2

2a(1 + n)2 sin(4naεv/c�)

]
. (21)

Putting the above equation into βI, we get:

βI =
(

(εadμad)
2

12
√

�ε0εv L2

)2/3 [
−2aπ(1 + n)2 sin(4naεv/c�)

cL2

]1/3

. (22)

Using equations (19) and (22), we found that:
|�ε|
εv

� 10−5. (23)

In our paper, the largest value of εad gives:
|�ε|
εv

= (εv − 0.9999εv)

εv
= 10−4. (24)

Therefore, from the above calculations, we conclude that the Markovian approximation
performs relatively well.

Finally, it is interesting to note that the formalism and results obtained for the isotropic
model also apply to one-dimensional systems. This can be very advantageous as one-
dimensional systems can be implemented as waveguide channels in real three-dimensional
photonic crystals [46].

In summary, we have studied the time evolution of the level populations and both
the transient and the steady-state behaviours of the imaginary part of the susceptibility in
an isotropic photonic crystal doped with doubly-driven five-level atoms. We found that
manipulation of the decay rate offers a new mechanism for switching the atomic system from
an inverted to a non-inverted state (and vice versa), with regards to the level population of the
ground state of the atom. We have also performed numerical simulations for the imaginary
part of the susceptibility. Our calculations have shown that due to the role played by the
band structure of the photonic crystal, the doped atom effectively becomes transparent to
any radiation field tuned to the resonance energy of the probed transition. Therefore, it is
possible to switch between an absorption state and a non-absorption state of the atomic system
by controlling the resonance energy. This is a very important finding as techniques of rendering
material systems transparent to resonant laser radiation are very desirable for applications in
quantum optics and radiation physics.
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